Automata Theory Research Papers Pdf

Please, wait while we are validating your browser

  • 1.

    Ablayev, F., Gainutdinova, A.: On the Lower Bounds for One-Way Quantum Automata. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 132–140. Springer, Heidelberg (2000)CrossRefGoogle Scholar

  • 2.

    Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison-Wesley, Reading (1986)MATHGoogle Scholar

  • 3.

    Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: Proceedings of the 39th FOCS, pp. 376–383 (1998)Google Scholar

  • 4.

    Ambainis, A., Bonner, R.F., Freivalds, R., Ķikusts, A.: Probabilities to Accept Languages by Quantum Finite Automata. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 174–185. Springer, Heidelberg (1999)CrossRefGoogle Scholar

  • 5.

    Ambainis, A., Ķikusts, A., Valdats, M.: On the class of languages recognizable by 1-way quantum finite automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 75–86. Springer, Heidelberg (2001)CrossRefGoogle Scholar

  • 6.

    Ambainis, A., Ķikusts, A.: Exact results for accepting probabilities of quantum automata. Theoretical Computer Science 295(1), 3–25 (2003)MathSciNetCrossRefMATHGoogle Scholar

  • 7.

    Ambainis, A., Beaudry, M., Golovkins, M., Ķikusts, A., Mercer, M., Thérien, D.: Algebraic Results on Quantum Automata. Theory of Computing Systems 39, 165–188 (2006)MathSciNetCrossRefMATHGoogle Scholar

  • 8.

    Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and Development 17, 525–532 (1973)MathSciNetCrossRefMATHGoogle Scholar

  • 9.

    Bertoni, A., Mereghetti, C., Palano, B.: Quantum computing: 1-way quantum automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 1–20. Springer, Heidelberg (2003)CrossRefGoogle Scholar

  • 10.

    Blondel, V.D., Canterini, V.: Undecidable problems for probabilistic automata of fixed dimension. Theory of Computing systems 36, 231–245 (2003)MathSciNetCrossRefMATHGoogle Scholar

  • 11.

    Bozapalidis, S.: Extending Stochastic and Quantum Functions. Theory of Computing Systems 2, 183–197 (2003)MathSciNetCrossRefMATHGoogle Scholar

  • 12.

    Brodsky, A., Pippenger, N.: Characterizations of 1-Way Quantum Finite Automata. SIAM Journal on Computing 31(5), 1456–1478 (2002)MathSciNetCrossRefMATHGoogle Scholar

  • 13.

    Busch, P., Lahti, P., Mittelstaedt, P.: The quantum theory of measurement. Springer, Heidelberg (1996)MATHGoogle Scholar

  • 14.

    Ciamarra, M.: Quantum reversibility and a new model of quantum automaton. Fundamentals of Computation Theory 13, 376–379 (2001)MATHGoogle Scholar

  • 15.

    Culik II, K., Kari, J.: Image compression using weighted finite automata. Computers and Graphics 17, 305–313 (1993)CrossRefGoogle Scholar

  • 16.

    Culik II, K., Kari, J.: Image-data compression using edge-optimizing algorithm for WFA inference. Journal of Information Processing and Management 30, 829–838 (1994)CrossRefGoogle Scholar

  • 17.

    Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London A 400, 97–117 (1985)MathSciNetCrossRefMATHGoogle Scholar

  • 18.

    Deutsch, D.: Quantum computational networks. Proceedings of the Royal Society of London A 425, 73–90 (1989)MathSciNetCrossRefMATHGoogle Scholar

  • 19.

    Eilenberg, S.: Automata, languages, and machines, vol. A. Academic Press, London (1974)MATHGoogle Scholar

  • 20.

    Feynman, R.P.: Simulating physics with computers. International Journal of Theoretical Physics 21(6/7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar

  • 21.

    Freivalds, R.: On the growth of the number of states in result of the determinization of probabilistic finite automata. Avtomatika i Vichislitelnaya Tekhnika 3, 39–42 (1982) (Russian)MathSciNetGoogle Scholar

  • 22.

    Freivalds, R.: Non-constructive Methods for Finite Probabilistic Automata. International Journal of Foundations of Computer Science 19(3), 565–580 (2008)MathSciNetCrossRefMATHGoogle Scholar

  • 23.

    Hirvensalo, M.: Quantum Computing, 2nd edn. Springer, Heidelberg (2004)CrossRefMATHGoogle Scholar

  • 24.

    Hirvensalo, M.: Some Open Problems Related to Quantum Computing. In: Paun, G., Rozenberg, G., Salomaa, A. (eds.) Current Trends in Theoretical Computer Science – The Challenge of the New Century, vol. 1. World Scientific, Singapore (2004)Google Scholar

  • 25.

    Hirvensalo, M.: Various Aspects of Finite Quantum Automata. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 21–33. Springer, Heidelberg (2008)CrossRefGoogle Scholar

  • 26.

    Hirvensalo, M.: Quantum Automata with Open Time Evolution. International Journal of Natural Computing Research 1, 70–85 (2010)CrossRefGoogle Scholar

  • 27.

    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)CrossRefMATHGoogle Scholar

  • 28.

    Kleene, S.: Representation of Events in Nerve Nets and Finite Automata. In: Shannon, C., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University Press, Princeton (1956)Google Scholar

  • 29.

    Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proceedings of the 38th IEEE Symposium on Foundations of Computer Science, pp. 66–75 (1997)Google Scholar

  • 30.

    Kuich, W., Salomaa, A.: Semirings, Automata and Languages. EATCS Monographs on Theoretical Computer Science, vol. 5. Springer, Heidelberg (1986)CrossRefMATHGoogle Scholar

  • 31.

    McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 7, 115–133 (1943)MathSciNetCrossRefMATHGoogle Scholar

  • 32.

    Mealy, G.: A Method for Synthesizing Sequential Circuits. Bell Systems Technical Journal 34, 1045–1079 (1955)MathSciNetCrossRefGoogle Scholar

  • 33.

    Moore, E.: Gedanken-experiments on Sequential Machines. In: Shannon, C., Ashby, W. (eds.) Automata Studies, pp. 129–153. Princeton University Press, Princeton (1956)Google Scholar

  • 34.

    Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theoretical Computer Science 237(1-2), 275–306 (2000)MathSciNetCrossRefMATHGoogle Scholar

  • 35.

    Paz, A.: Some aspects of probabilistic automata. Information and Control 9, 26–60 (1966)MathSciNetCrossRefMATHGoogle Scholar

  • 36.

    Paz, A.: Introduction to Probabilistic Automata. Academic Press, London (1971)MATHGoogle Scholar

  • 37.

    Rabin, M.O., Scott, D.: Finite Automata and Their Decision Problems. IBM Journal of Research and Development 3(2), 114–125 (1959)MathSciNetCrossRefMATHGoogle Scholar

  • 38.

    Rabin, M.O.: Probabilistic Automata. Information and Control 6, 230–245 (1963)CrossRefMATHGoogle Scholar

  • 39.

    Shor, P.W.: Algorithms for quantum computation: discrete log and factoring. In: Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, pp. 20–22 (1994); Physical Review Letters 81(17), 3563–3566 (1998)Google Scholar

  • 40.

    Schützenberger, M.-P.: On the Definition of a Family of Automata. Information and Control 4, 245–270 (1961)MathSciNetCrossRefMATHGoogle Scholar

  • 41.

    Schützenberger, M.-P.: On finite monoids having only trivial subgroups. Information and Control 8, 190–194 (1965)MathSciNetCrossRefMATHGoogle Scholar

  • 42.

    Turakainen, P.: On Stochastic Languages. Information and Control 12, 304–313 (1968)MathSciNetCrossRefMATHGoogle Scholar

  • 43.

    Yu, S.: Regular Languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Word, Language, Grammar, vol. 1. Springer, Heidelberg (1997)Google Scholar

  • 0 thoughts on “Automata Theory Research Papers Pdf

    Leave a Reply

    Your email address will not be published. Required fields are marked *